
# Interpreting Food Allergy Testing

Y





Katie Larson, PA-C

### No disclosures

But I would love some;)...

### Objectives

- Learn the three main types of food allergy testing and their benefits and limitations.
- Properly interpret both skin prick and allergen specific serum IgE testing to aid in diagnosis and management of food allergy.
- Determine when an oral food challenge may be needed to further elucidate a diagnosis of food allergy.







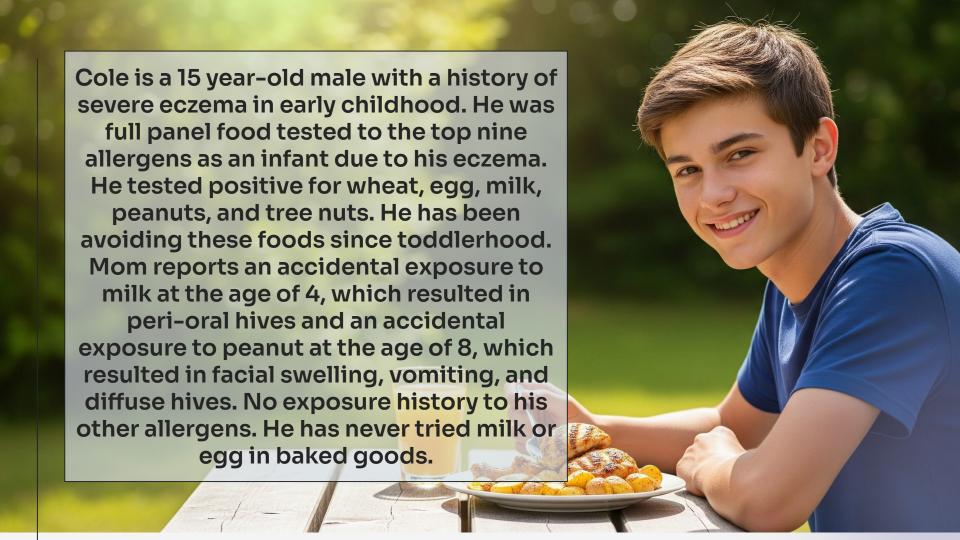


In a single word, describe your thoughts or feelings about food allergy testing.





### Table of contents


1 2

Meet Our Case Types of Study Tests

**3** 4

Test Putting it all Interpretation together

# 7 Meet our Case Study





## In a few words, what is your first impression about Cole's food allergies?





### You decide to repeat food testing on Cole.

What type of tests do you run?

And are these tests going to help us in decision making?

# 2 Types of Tests

### Let's Define Some Statistical Terms:1



#### Sensitivity

- A test's ability to detect everyone with the disease.
- Negatives on sensitive tests help rule out disease.
- Not dependent on patient population.



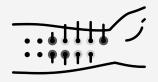
#### **Positive Predictive Value**

- Percentage of patients testing positive who truly have the disease.
- Can change with patient population.



#### Specificity

- A test's ability to exclude those who do NOT have the disease.
- Positives on specific tests help rule in disease.
- Not dependent on patient population.




#### **Negative Predictive Value**

- Percentage of patients testing negative who truly do NOT have the disease.
- Can change with patient population.

### **Three Main Food Allergy Tests**







| Allergen Specific<br>Serum IgE Testing                                     | Percutaneous (Skin) Prick Testing                                        | Oral Food Challenge                                                   |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Blood draw, measures free floating IgE (results in days to a about a week) | In office test, measures skin histamine response (results in 20 minutes) | In office oral test (results in 4 hours)                              |
| No need to avoid antihistamines                                            | Avoid antihistamines 5-7 days prior                                      | Avoid antihistamines 48-72 hours prior                                |
| Lowest risk                                                                | Low risk                                                                 | Higher risk                                                           |
| High sensitivity, low specificity <sup>2</sup>                             | High sensitivity, <b>low</b> specificity <sup>2</sup>                    | High sensitivity, high specificity, <b>gold standard</b> <sup>2</sup> |

### Serum IgE and Skin Prick Testing: The Specificity Problem

- This is not a pregnancy test– these tests will NOT give you a "yes/no" "allergic/not allergic" answer.
- A positive test result only indicates sensitization to the allergen, and does not indicate clinical reaction.<sup>1</sup>
- The false positive rate of both forms of testing is upwards of 50%.3
- This false positive rate is why we NEVER PERFORM FULL PANEL FOOD TESTING ON PATIENTS.<sup>4</sup>
- Increasing SPT wheal size and increasing serum IgE numbers indicate an increased likelihood of a clinical reaction to the food.<sup>1</sup>
- Increasing SPT wheal size and increasing serum IgE numbers DO NOT indicate severity of an allergy.<sup>1</sup>
- Because sensitivity is high, negatives for both tests are fairly reliable.<sup>2</sup>

## History is KEY to food allergy diagnosis.



Testing should generally only be performed to confirm an allergy after a convincing history of reaction, but often, we are faced with patients who have an unclear history of reaction or who were full panel food tested by another clinician. It's at these times we need a deep knowledge of food testing interpretation and its limitations.

### 3

### Test Interpretation

### The goal of skin prick and serum IgE testing is to is place allergens in one of three buckets:



#### Introduce Allergen at Home

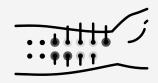
- Completely negative testing AND
- No or questionable reaction history



### In Office Oral Food Challenge

- Minimally positive testing and/or
- Convincing distant reaction history




### **Avoidance vs Treatment**

- Strongly positive testing and/or
- Convincing recent reaction history

### What constitutes a "convincing" history of reaction?

- True IgE mediated reactions to food are:
  - RELIABLE: the reaction occurs EVERY TIME a sufficient amount of the food is eaten<sup>1</sup>
  - RAPID: the reaction occurs within minutes to about two hours of eating the food<sup>5, 6</sup>
  - REGULAR: 90% of allergic reactions to food occur with the same 9 foods<sup>5</sup>
    - Milk, egg, wheat, soy, peanut, tree nuts, sesame, fish, shellfish<sup>5</sup>

### What Constitutes Negative Testing?



#### **Skin Prick Test**

Wheals <3mm are considered negative.<sup>1</sup>



#### Serum IgE

Measurements <0.1 kU/L are considered negative.<sup>7</sup>

Patients with negative SPT and allergen specific serum IgE with little to no reaction history can likely trial foods at home safely.



### What constitutes "Strongly Positive" Testing? 95% Positive Predictive Values

| Allergen                 | Allergen Specific Serum<br>IgE 95% PPV | Skin Prick Test Wheal<br>95% PPV |
|--------------------------|----------------------------------------|----------------------------------|
| Egg White <sup>1,8</sup> | ≥7 kU/L<br>(≥2 kU/L if under age 2)    | ≥7 mm<br>≥4 mm (infants)         |
| Cow's Milk <sup>1</sup>  | ≥15 kU/L<br>(≥5 kU/L if under age 1)   | ≥8 mm                            |
| Peanut <sup>1</sup>      | ≥14 kU/L                               | ≥8 mm                            |
| Tree Nuts <sup>9</sup>   | ≥15 kU/L                               | ≥8 mm                            |
| Fish <sup>1</sup>        | ≥20 kU/L                               | not established                  |
| Shellfish                | not established                        | not established                  |
| Sesame <sup>8, 10</sup>  | Best PPV 86% @ 50 kU/L (infants)       | ≥14 mm<br>≥8 mm (infants)        |
| Wheat <sup>2</sup>       | Best PPV 75% @ 100 kU/L                | not established                  |
| Soy <sup>2</sup>         | Best PPV 50% @ 65 kU/L                 | not established                  |

These patients likely need to avoid or treat their allergens.





## What stands out to you about these positive predictive values?





### What constitutes "Strongly Positive" Testing? 95% Positive Predictive Values

| Allergen                 | Allergen Specific Serum<br>IgE 95% PPV | Skin Prick Test Wheal<br>95% PPV |
|--------------------------|----------------------------------------|----------------------------------|
| Egg White <sup>1,8</sup> | ≥7 kU/L<br>(≥2 kU/L if under age 2)    | ≥7 mm<br>≥4 mm (infants)         |
| Cow's Milk <sup>1</sup>  | ≥15 kU/L<br>(≥5 kU/L if under age 1)   | ≥8 mm                            |
| Peanut <sup>1</sup>      | ≥14 kU/L                               | ≥8 mm                            |
| Tree Nuts <sup>9</sup>   | ≥15 kU/L                               | ≥8 mm                            |
| Fish <sup>1</sup>        | ≥20 kU/L                               | not established                  |
| Shellfish                | not established                        | not established                  |
| Sesame <sup>8, 10</sup>  | Best PPV 86% @ 50 kU/L (infants)       | ≥14 mm<br>≥8 mm (infants)        |
| Wheat <sup>2</sup>       | Best PPV 75% @ 100 kU/L                | not established                  |
| Soy <sup>2</sup>         | Best PPV 50% @ 65 kU/L                 | not established                  |

These patients likely need to avoid or treat their allergens.



### What constitutes "Strongly Positive"

Testing? Recent Meta Analysis of Cut Offs11

| Allergen   | Allergen Specific Serum IgE 95% PPV                                   | Skin Prick Test Wheal<br>95% PPV           |
|------------|-----------------------------------------------------------------------|--------------------------------------------|
| Egg White  | ≥7 kU/L (meta analysis only 70% specificity) (≥2 kU/L if under age 2) | ≥7 mm (meta analysis only 68% specificity) |
| Cow's Milk | ≥15 kU/L<br>(≥5 kU/L if under age 1)                                  | ≥8 mm                                      |
| Peanut     | ≥14 kU/L                                                              | ≥8 mm                                      |
| Tree Nuts  | ≥15 kU/L                                                              | ≥8 mm                                      |
| Fish       | ≥20 kU/L                                                              | not established                            |
| Shellfish  | not established                                                       | not established                            |
| Sesame     | Best PPV 86% @ 50 kU/L (infants)                                      | ≥14 mm<br>≥8 mm (infants)                  |
| Wheat      | Best PPV 75% @ 100 kU/L                                               | not established                            |
| Soy        | Best PPV 50% @ 65 kU/L                                                | not established                            |

Meta Analysis Specificity<sup>11</sup> Green = >90% Yellow = 80-90% Red = <80%



### What constitutes "Strongly Positive" Testing?

| Component Resolved Diagnostics     |                                                                        |  |
|------------------------------------|------------------------------------------------------------------------|--|
| Allergen                           | Allergen Specific Serum IgE: High Risk of Reacting                     |  |
| Egg White: Ovomucoid <sup>12</sup> | ≥11 kU/L* (heated egg white reactivity) *95% specificity               |  |
| Cow's Milk: Casein <sup>13</sup>   | ≥5.4 kU/L* (baked milk reactivity ≤ 24 months of age) *95% specificity |  |
| Peanut: Ara h 2 <sup>14</sup>      | ≥42 kU/L (95% PPV)<br>≥14.4 kU/L (90% PPV)                             |  |
| Cashew: Ana o 3 <sup>15</sup>      | ≥2 kU/L (95% PPV)                                                      |  |
| Hazelnut: Cor a 14 <sup>14</sup>   | ≥47.8 kU/L (90% PPV)                                                   |  |
| Sesame: Ses i 1 <sup>16</sup>      | Best PPV 50% @ >32 kU/L                                                |  |

These patients likely need to avoid or treat their allergens.



### What constitutes "Minimally Positive" Testing?

 Consider 50% negative predictive values as a rough guide for offering in office oral food challenges.

| 50% Negative Predictive Values |                                             |                                  |  |
|--------------------------------|---------------------------------------------|----------------------------------|--|
| Allergen                       | Allergen Specific Serum IgE 50% NPV         | Skin Prick Test Wheal<br>50% NPV |  |
| Egg White <sup>1</sup>         | ≤2 kU/L                                     | ≤3 mm                            |  |
| Cow's Milk <sup>1</sup>        | ≤2 kU/L                                     | not established                  |  |
| Peanut <sup>1</sup>            | ≤2 kU/L (hx of rx)<br>≤5 kU/L (no hx of rx) | ≤3 mm                            |  |
| Tree Nuts <sup>17</sup>        | ≤5 kU/L*<br>*58% OFC pass rate              | not established                  |  |
| fish, sesame, wheat, soy       | not established                             | not established                  |  |

Unless there is a recent history of a convincing reaction, these patients likely need to undergo in office oral food challenges.



### What constitutes "Minimally Positive" Testing?

#### Using Component Testing to Guide OFC Decision Making

|                                          | _                                        |                                                                                 |
|------------------------------------------|------------------------------------------|---------------------------------------------------------------------------------|
| Allergen: Component                      | •                                        | Consideration for Oral Food<br>Challenge                                        |
| Egg White: Ovomucoid <sup>12</sup>       | heat stable protein in egg               | Optimal cut off point for heated egg reactivity: 4.4 kU/L (sens 76%, spec 81%)  |
| Cow's Milk: Casein <sup>13</sup>         | heat stable protein in milk              | Optimal cut off point for baked milk reactivity: 4.68 kU/L (sens 75%, spec 84%) |
| Peanut: ara h 8 <sup>18</sup>            | associated with oral allergy syndrome    | Consider challenge if ara h 8 is the ONLY positive component                    |
| Hazelnut: cor a 1 <sup>18</sup>          | associated with oral allergy syndrome    | Consider challenge if cor a 1 is the ONLY positive component                    |
| All other peanut and tree nut components | may be associated with systemic reaction | Use shared decision making, challenge may be higher risk at even low IgEs       |

Unless there is a recent history of a convincing reaction, these patients likely need to undergo in office oral food challenges.



### Other considerations for Oral Food Challenges

- Consider challenges at higher allergen specific IgEs for patients with atopic dermatitis and/or high total IgE.<sup>1</sup>
- Use shared decision-making with families, explaining that challenges with higher sigEs and/or SPT are higher risk.<sup>1</sup>
- Remember that **history is KEY.** If a patient has a convincing recent reaction, they have already performed (and failed) their own oral food challenge.
- Consider the natural history of each allergen: milk, egg, wheat and soy are commonly outgrown in childhood. If no recent reaction and declining testing, especially below 50% NPV, consider challenge.<sup>1</sup>
- Remember that wheat, soy, and sesame often yield high allergen specific IgEs with no clinical reactivity.<sup>2, 8, 10</sup> Consider challenges of these foods with even high IgEs if no recent reaction.
- Sometimes, the decision is made based on \*VIBES\* we use fancy words for this like "expert opinion" and "pattern recognition." Asking a more experienced clinician their thoughts is never the wrong thing to do!

Unless there is a recent history of a convincing reaction, these patients may need to undergo in office oral food challenges.



4

## Putting it all Together

#### **Cole's Food Allergy Testing Results:**

| Serum IgE<br>(kU/L)      | SPT<br>Wheal<br>(mm)                                      |
|--------------------------|-----------------------------------------------------------|
| 1.5, casein negative     | 4                                                         |
| 14,<br>ovomucoid:<br>1.9 | 9                                                         |
| 24                       | 5                                                         |
| ≥100<br>ara h 2: 63      | 17                                                        |
|                          | (kU/L)  1.5, casein negative  14, ovomucoid: 1.9  24 ≥100 |

\*Consider components not listed negative.

| Allergen | Serum<br>IgE<br>(kU/L) | SPT<br>Wheal<br>(mm) |
|----------|------------------------|----------------------|
| cashew   | 16, ana<br>o 3: 15     | 11                   |
| walnut   | <0.1                   | 0                    |
| hazelnut | 56,<br>cor a 1:<br>41  | 8                    |
| almond   | 3.2                    | 5                    |



#### **Cole's Food Allergy Testing Results:**

| Allergen | Serum IgE<br>(kU/L)      | SPT<br>Wheal<br>(mm) |
|----------|--------------------------|----------------------|
| milk     | 1.5, casein negative     | 4                    |
| egg      | 14,<br>ovomucoid:<br>1.9 | 9                    |
| wheat    | 24                       | 5                    |
| peanut   | ≥100<br>ara h 2: 63      | 17                   |

| Allergen | Serum<br>IgE<br>(kU/L) | SPT<br>Wheal<br>(mm) |
|----------|------------------------|----------------------|
| cashew   | 16, ana<br>o 3: 15     | 11                   |
| walnut   | <0.1                   | 0                    |
| hazelnut | 56,<br>cor a 1:<br>41  | 8                    |
| almond   | 3.2                    | 5                    |



### Introduce Allergen at Home

- Completely negative testing AND
- No or questionable reaction history



Which allergen(s) would you recommend for home introduction? (select all that apply)





#### **Cole's Food Allergy Testing Results:**

| Allergen | Serum IgE<br>(kU/L)      | SPT<br>Wheat | Allergen | Serum<br>SE<br>(L) | SPT<br>Wheal<br>(mm) |
|----------|--------------------------|--------------|----------|--------------------|----------------------|
| milk     | 1.5, casein<br>negative  |              |          |                    | 11                   |
| egg      | 14,<br>ovomucoid:<br>1.9 |              |          |                    | 0                    |
| wheat    | 24                       | 5            |          | 56,<br>cor a 1:    | 8                    |
| peanut   | ≥100<br>ara h 2: 63      | 17           | almond   | 3.2                | 5                    |



### **Introduce Allergen** at Home

- Completely negative testing AND
- No or questionable reaction history

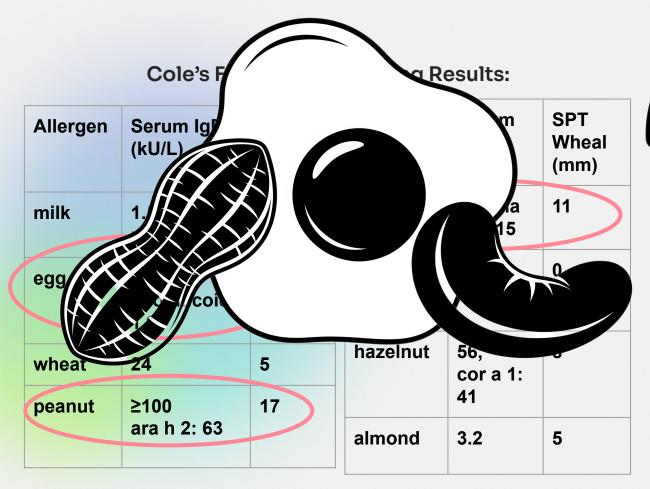
#### **Cole's Food Allergy Testing Results:**

| Allergen | Serum IgE<br>(kU/L)      | SPT<br>Wheal<br>(mm) |
|----------|--------------------------|----------------------|
| milk     | 1.5, casein negative     | 4                    |
| egg      | 14,<br>ovomucoid:<br>1.9 | 9                    |
| wheat    | 24                       | 5                    |
| peanut   | ≥100<br>ara h 2: 63      | 17                   |

| Allergen | Serum<br>IgE<br>(kU/L) | SPT<br>Wheal<br>(mm) |
|----------|------------------------|----------------------|
| cashew   | 16, ana<br>o 3: 15     | 11                   |
| walnut   | <0.1                   | 0                    |
| hazelnut | 56,<br>cor a 1:<br>41  | 8                    |
| almond   | 3.2                    | 5                    |



### **Avoidance vs Treatment**


- Strongly positive testing and/or
- Convincing recent reaction history



Which allergen(s) would you recommend that Cole either treat or avoid? (select all that apply)









### **Avoidance vs Treatment**

- Strongly positive testing and/or
- Convincing recent reaction history

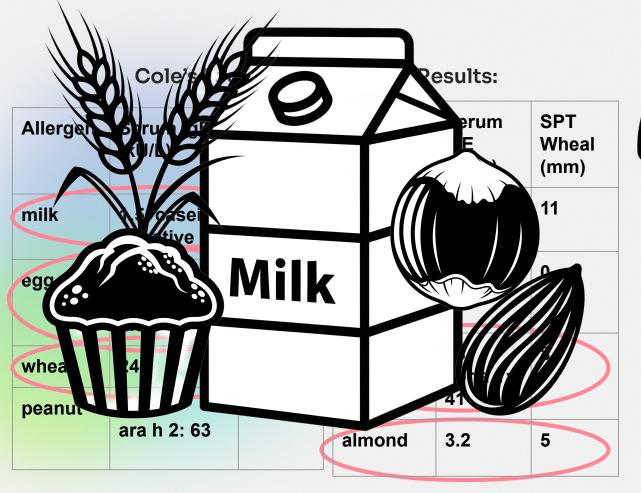
#### **Cole's Food Allergy Testing Results:**

| Allergen | Serum IgE<br>(kU/L)      | SPT<br>Wheal<br>(mm) |
|----------|--------------------------|----------------------|
| milk     | 1.5, casein negative     | 4                    |
| egg      | 14,<br>ovomucoid:<br>1.9 | 9                    |
| wheat    | 24                       | 5                    |
| peanut   | ≥100<br>ara h 2: 63      | 17                   |

| Allergen | Serum<br>IgE<br>(kU/L) | SPT<br>Wheal<br>(mm) |
|----------|------------------------|----------------------|
| cashew   | 16, ana<br>o 3: 15     | 11                   |
| walnut   | <0.1                   | 0                    |
| hazelnut | 56,<br>cor a 1:<br>41  | 8                    |
| almond   | 3.2                    | 5                    |



### In Office Oral Food Challenge


- Minimally positive testing and/or
- Convincing distant reaction history



Which allergen(s) would you recommend for an in-office oral food challenge? (select all that apply)









### In Office Oral Food Challenge

- Minimally positive testing and/or
- Convincing distant reaction history









### Thanks!

Do you have any questions?

katie.larson@aspireallergy.com









**CREDITS:** This presentation template was created by <u>Slidesgo</u>, and includes icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

### References

- 1. Sampson HA, Aceves S, Bock SA, et al. Food allergy: a practice parameter update-2014. J Allergy Clin Immunol. 2014;134(5):1016-25.e43. doi:10.1016/j.jaci.2014.05.013
- 2. Sampson HA, Ho DG. Relationship between food-specific IgE concentrations and the risk of positive food challenges in children and adolescents. *J Allergy Clin Immunol*. 1997;100(4):444-451. doi:10.1016/s0091-6749(97)70133-7
- 3. Jones SM, Burks AW. Food Allergy. N Engl J Med. 2017;377(23):2294-2295. doi:10.1056/NEJMc1713844
- 4. Parrish CP. A review of food allergy panels and their consequences. Ann Allergy Asthma Immunol. 2023;131(4):421-426. doi:10.1016/j.anai.2023.04.011
- 5. Iglesia EGA, Kwan M, Virkud YV, Iweala OI. Management of Food Allergies and Food-Related Anaphylaxis. JAMA. 2024;331(6):510-521. doi:10.1001/jama.2023.26857
- 6. Anvari S, Miller J, Yeh CY, Davis CM. IqE-Mediated Food Allergy. Clin Rev Allergy Immunol. 2019;57(2):244-260. doi:10.1007/s12016-018-8710-3
- 7. Thorpe M, Movérare R, Fischer C, Lidholm J, Rudengren M, Borres MP. History and Utility of Specific IgE Cutoff Levels: What is the Relevance for Allergy Diagnosis?. *J Allergy Clin Immunol Pract*. 2023;11(10):3021-3029. doi:10.1016/j.jaip.2023.05.022
- 8. Peters RL, Allen KJ, Dharmage SC, et al. Skin prick test responses and allergen-specific IgE levels as predictors of peanut, egg, and sesame allergy in infants. *J Allergy Clin Immunol*. 2013;132(4):874-880. doi:10.1016/j.jaci.2013.05.038
- 9. Clark AT, Ewan PW. Interpretation of tests for nut allergy in one thousand patients, in relation to allergy or tolerance. Clin Exp Allergy. 2003;33(8):1041-1045. doi:10.1046/j.1365-2745.2003.01624.x
- 10. Saf S, Sifers TM, Baker MG, et al. Diagnosis of Sesame Allergy: Analysis of Current Practice and Exploration of Sesame Component Ses i 1. *J Allergy Clin Immunol Pract*. 2020;8(5):1681-1688.e3. doi:10.1016/j.jaip.2019.11.028
- 11. Riggioni C, Ricci C, Moya B, et al. Systematic review and meta-analyses on the accuracy of diagnostic tests for IgE-mediated food allergy. *Allergy*. 2024;79(2):324-352. doi:10.1111/all.15939
- 12. Ando H, Movérare R, Kondo Y, et al. Utility of ovomucoid-specific IgE concentrations in predicting symptomatic egg allergy. *J Allergy Clin Immunol*. 2008;122(3):583-588. doi:10.1016/j.jaci.2008.06.016
- 13. Cogurlu MT, Uluc NN, Ozanli I, et al. The utility of casein skin prick test and IgE values in predicting anaphylaxis and reactivity to baked milk. *Ann Allergy Asthma Immunol.* 2025;134(6):700-705.e1. doi:10.1016/j.anai.2025.03.020
- 14. Beyer K, Grabenhenrich L, Härtl M, et al. Predictive values of component-specific IgE for the outcome of peanut and hazelnut food challenges in children. *Allergy*. 2015;70(1):90-98. doi:10.1111/all.12530
- 15. Lange L, Lasota L, Finger A, et al. Ana o 3-specific IgE is a good predictor for clinically relevant cashew allergy in children. *Allergy*. 2017;72(4):598-603. doi:10.1111/all.13050
- 16. Saf S, Borres MP, Södergren E. Sesame allergy in children: New insights into diagnosis and management. *Pediatr Allergy Immunol*. 2023;34(8):e14001. doi:10.1111/pai.14001
- 17. Fleischer DM, Conover-Walker MK, Matsui EC, Wood RA. The natural history of tree nut allergy. *J Allergy Clin Immunol*. 2005;116(5):1087-1093. doi:10.1016/j.jaci.2005.09.002
- 18. Beck SC, Huissoon AP, Collins D, Richter AG, Krishna MT. The concordance between component tests and clinical history in British adults with suspected pollen-food syndrome to peanut and hazelnut. *J Clin Pathol*. 2018;71(3):239-245. doi:10.1136/jclinpath-2017-204573